Сверхтвердые синтетические поликристаллические инструментальные материалы (пстм). Сверхтвердые инструментальные материалы (СТМ) Литые твёрдые сплавы

Сверхтвердые материалы

Сверхтвёрдые материа́лы - группа веществ, обладающих высочайшей твердостью, к которой относят материалы, твёрдость и износустойчивость которых превышает твёрдость и износоустойчивость твёрдых сплавов на основе карбидов вольфрама и титана с кобальтовой связкой карбидотитановых сплавов на никель-молибденовой связке. Широко применяемые сверхтвердые материалы: электрокорунд , оксид циркония , карбид кремния , карбид бора , боразон , диборид рения , алмаз . Сверхтвёрдые материалы часто применяются в качестве материалов для абразивной обработки .

В последние годы пристальное внимание современной промышленности направлено к изысканию новых типов сверхтвёрдых материалов и ассимиляции таких материалов, как нитрид углерода, сплав бор-углерод-кремний , нитрид кремния, сплав карбид титана-карбид скандия, сплавы боридов и карбидов подгруппы титана с карбидами и боридами лантаноидов.


Wikimedia Foundation . 2010 .

Смотреть что такое "Сверхтвердые материалы" в других словарях:

    Сверхтвердые керамические материалы - – композиционные керамичес­кие материалы, получаемые введением различных легирующих добавок и наполнителей в исходный нитрид бора. Структура таких материалов образо­вана прочно связанными мельчайшими кристаллитами и, следовательно, они являются… …

    Группа веществ, обладающих высочайшей твердостью, к которой относят материалы, твёрдость и износоустойчивость которых превышает твёрдость и износоустойчивость твёрдых сплавов на основе карбидов вольфрама и титана с кобальтовой связкой… … Википедия

    Древесноволокнистые сверхтвердые плиты СМ-500 - – изготовляют прессованием молотой древесной массы, обработанной полимерами, чаще всего фенолоформальдегидными, с добавками высыхающих масел и некоторых других компонентов. Выпускают длиной 1,2 м, шириной 1,0 м и толщиной 5 6 мм. Полы из таких… … Энциклопедия терминов, определений и пояснений строительных материалов

    порошковые материалы - консолидированные материалы, полученные из порошков; в литературе часто используется наряду с «порошковыми материалами» термин «спеченные материалы», т.к. один из основных способов консолидации порошков спекание. Порошковые… … Энциклопедический словарь по металлургии

    - (фр. abrasif шлифовальный, от лат. abradere соскабливать) это материалы, обладающие высокой твердостью, и используемые для обработки поверхности различных материалов. Абразивные материалы используются в процессах шлифования, полирования,… … Википедия

    В Википедии есть статьи о других людях с такой фамилией, см. Новиков. В Википедии есть статьи о других людях с именем Новиков, Николай. Новиков Николай Васильевич … Википедия

    Шлифовáние механическая или ручная операция по обработке твёрдого материала (металл, стекло, гранит, алмаз и др.). Разновидность абразивной обработки, которая, в свою очередь, является разновидностью резания. Механическое шлифование обычно… … Википедия

    - (от ср. век. лат. detonatio взрыв, лат. detonо гремлю), распространение со сверхзвуковой скоростью зоны быстрой экзотермич. хим. р ции, следующей за фронтом ударной волны. Ударная волна инициирует р цию, сжимая и нагревая детонирующее в во… … Химическая энциклопедия

    Неорганическая химия раздел химии, связанный с изучением строения, реакционной способности и свойств всех химических элементов и их неорганических соединений. Это область охватывает все химические соединения, за исключением органических… … Википедия

    - … Википедия

Книги

  • Инструментальные материалы в машиностроении: Учебник. Гриф МО РФ , Адаскин А.М.. В учебнике представлены материалы для изготовления режущего, штампового, слесарно-монтажного, вспомогательного, контрольно-измерительного инструмента: инструментальные, быстрорежущие и…

Синтетический алмаз (АС) и кубический нитрид бора (CBN) (торговые марки- эльбор, кубонит, боразон) относятся к сверхтвёрдым материалам (СТМ), твердость которых превышает твердость традиционных абразивных материалов.

Алмаз – самый твёрдый из известных науке материалов, состоящий практически только из чистого углерода (С), атомы которого расположены в виде узкой, высокопрочной трёхмерной матрицы. Алмазы представлены моно- и макрокристаллическими структурами с совершенной спаянностью.
В 1954 году учёными американской компанией «General Electrics» удалось синтезировать из графита алмазы в лабораторных условиях. В 1960 году синтез алмазов был освоен в СССР. В настоящее время объём производства синтетических алмазов в несколько раз превышает объём добычи природных алмазов.Большинство синтетических алмазов имеют монокристаллическую структуру. Возможные формы (морфология) кристаллов синтетических алмазов простирается от кубической формы до формы восьмигранника.Анизотропия твёрдости алмазных граней определяет наименее износоустойчивые направления: в плоской сетке октаэдра – направления, соответствующие высотам треугольных граней; в плоской сетке куба – направления, параллельные сторонам кубических граней. Наибольшей твёрдостью обладают кубические грани. В свою очередь, твёрдость октаэдрических граней больше твёрдости ромбододекаэдрических. Синтетические монокристаллические алмазы по сравнению с природными имеют более острые грани и меньшие радиуса скруглений вершин режущих кромок, чем объясняются их лучшие режущие свойства. Алмаз также имеет наибольший из всех известных материалов модуль упругости (модуль Юнга Е = 900000 МПа). При наибольшей из всех известных материалов прочности на разрыв, предел прочности алмазов при сжатии и изгибе небольшой. Обладая совершенной спаянностью, кристаллы алмаза скалываются, образуя в зависимости от дефектов строения, ровные, ступенчатые или раковистые изломы. Алмазы не смачиваются водой, но прилипают к жировым смесям. Этим свойством руководствуются при выборе типа смазочно-охлаждающей жидкости при шлифовании алмазным инструментом (масляные СОЖ оказывают смазывающее действие на алмазные зёрна, снижая работу трения). Алмаз характеризуется высокой теплопроводностью: она в два-пять раз выше, чем у металлов. Высокая теплопроводность алмаза позволяет быстрее отводить тепло с поверхности обрабатываемых изделий. Отдельные металлы, например, железо, при температуре более 800 0С частично растворяют алмаз, ограничивая его применение.

Кроме монокристаллических алмазов синтезируются поликристаллические алмазы «карбонадо» и «баллас» идентичные по структуре соответствующим природным алмазам. Путём спекания синтетических алмазов в гранулы цилиндрической или сегментной форм тёмного цвета производятся также поликристаллические алмазы типа «спеки».

Кубический нитрид бора – это искуственный абразивный материал, в основном, состава BN с плотной кубической упаковкой атомов бора и азота в тетраэдрической координации.
Кубический нитрид бора не встречается в природе. Впервые его синтез был произведён в 1957 году американской компанией «General Electrics» в результате экспериментальных поисков новых абразивных материалов. Синтез кубического нитрида бора осуществляется таким же образом, как и производство синтетических алмазов.

Кубический нитрид (КНБ) бора получают из гексагонального нитрида бора a-BN (плотность 2,34 г/см3) при высоких давлении и температуре. Переход гексагонального нитрида бора в кубический сопровождается уплотнением кристаллической решётки в 11,5 раза. На долю основной составляющей кубического нитрида бора (b-BN) приходится более 92 %. Цвет кристаллов изменяется от белого и жёлтого до аметистового и чёрного.
Вследствие более комплексной атомной структуры кубический нитрид бора имеет большее количество форм кристаллов. С одной стороны, возможные формы кристаллов кубического нитрида бора простираются от кубической формы до формы восьмигранника, как у алмазов, с другой стороны, возможные формы кристаллов кубического нитрида бора простираются от формы восьмигранника до формы четырёхгранника.
Шлифовальные материалы из КНБ имеют два вида: с зёрнами с моно- и макрокристаллическими (поликристаллическими) структурами и микрокристаллического гранулометрического состава, полученными спеканием микропорошков. гексагонального или вюрцитоподобного нитрида бора (ВНБ).

К инструментальным сверхтвердым материалам относятся алмазы и материалы на основе кубического нитрида бора. Различают природные (А) и синтетические (АС) алмазы. Алмаз является самым твердым материалом. Он обладает высокой износостойкостью, хорошей теплопроводностью, малыми коэффициентами линейного и объемного расширения, небольшим коэффициентом трения и малой адгезионной способностью к металлам, за исключением железа и стали. Однако прочность алмаза невелика. Твердость и прочность алмаза различные в разных направлениях. Обрабатывать алмаз легче в направлении, параллельном граням кристалла, так как в этом направлении атомы наиболее удалены друг от друга. Теплостойкость алмаза характеризуется тем, что при температуре около 800 °С в обычных условиях он начинает превращаться в графит. Вместе с тем алмаз обладает наиболее высокой абразивной способностью по сравнению с другими абразивными материалами. К недостаткам алмаза относится его способность интенсивно растворяться в железе и его сплавах при температуре 750...800 °С. Алмазный инструмент характеризуется высокой производительностью и стойкостью. Он наиболее эффективно применяется при об-

работке твердых сплавов, цветных металлов и их сплавов, титана и его сплавов, а также пластмасс. При этом обеспечивается высокая точность размеров и качество поверхности.

В порядке возрастания прочности, снижения хрупкости и удельной поверхности шлифовальные порошки из синтетических алмазов располагаются так: АС2 (АСО), АС4 (АСР), АС6 (АСВ), АС15 (АСК), АС32 (АСС). Зерна АС2 хорошо удерживаются в связке и рекомендуются для изготовления инструмента на органической связке. Зерна АС4 предназначены в основном для изготовления различного инструмента на металлической и керамической связках, АС6 - инструмента на металлических связках, работающего при повышенных удельных давлениях, АС 12 - для обработки камня и других твердых материалов, АС32 - для правки абразивных кругов, обработки корунда, рубина и других особо твердых материалов.

Из природных алмазов используют микропорошки марок AM и АН, а из синтетических - ACM и АСН. Микропорошки AM и ACM нормальной абразивной способности предназначены для изготовления абразивного инструмента, которым обрабатывают твердые сплавы и другие твердые и хрупкие материалы, а также детали из стали, чугуна, цветных металлов при необходимости получения высокой чистоты поверхности.

Микропорошки АН и АСН, имеющие повышенную абразивную способность, рекомендуются для обработки сверхтвердых, хрупких, труднообрабатываемых материалов. Зернистость порошков обозначается дробью, числитель которой соответствует наибольшему, а знаменатель - наименьшему размеру зерен основной фракции.

С целью повышения эффективности работы алмазного абразивного инструмента применяют алмазные зерна, покрытые тонкой металлической пленкой. В качестве покрытий используют металлы с хорошими адгезионными и капиллярными свойствами по отношению к алмазу - медь, никель, серебро, титан и их сплавы. Покрытие повышает сцепление зерен со связкой, способствует отводу тепла из зоны резания, обеспечивает возможность ориентации зерен в магнитном поле при изготовлении инструмента.

Кубический нитрид бора (элъбор , кубонит ) применяют для обработки заготовок из стали и чугуна. Особенно эффективно его

применение при окончательном и профильном шлифовании термообработанных заготовок из высоколегированных конструкционных жаропрочных и коррозионно-стойких сталей высокой твердости и заточке стального режущего инструмента. При этом расход абразивного инструмента снижается в 50-100 раз по сравнению с расходом электрокорунда.

В зависимости от показателя механической прочности эльбор подразделяют на марки: ЛО - обычной прочности, ЛП - повышенной механической прочности, Л КВ - высокопрочный. Эльбор обычной механической прочности применяют для изготовления инструмента на органической связке и шлифовальной шкурки, эльбор повышенной механической прочности - для изготовления инструмента на керамической и металлических связках, для обдирочного шлифования, глубинной заточки, обработки заготовок из труднообрабатываемых конструкционных сталей. Эльбор марки Л КВ используют для производства инструментов на металлической связке, предназначенных для работы в тяжелых условиях.

Кубонит выпускают двух марок: КО - обычной прочности, КР - повышенной прочности. Кроме того, из кубонита выпускают микропорошки двух марок: нормальной (КМ) и повышенной (КН) абразивной способности. Инструмент из кубонита имеет одинаковые с эльборовым инструментом эксплуатационные свойства. Его используют в тех же целях.

Сверхтвердые материалы (СТМ) - к ним относят алмазы (природные и синтетические) и композиционные материалы на основе кубического нитрида бора.

Алмаз - одна из модификаций углерода. Благодаря кубическому строению кристаллической решетки алмаз является самым твердым из известных в природе минералов. Его твердость в 5 раз выше, чем твердого сплава, однако прочность невелика и монокристаллы природного алмаза при достижении критических нагрузок разрушаются на мелкие фрагменты. Поэтому природные алмазы используют только на чистовых операциях, для которых характерны малые силовые нагрузки.

Теплостойкость алмазов равна 700...800 °С (при более высоких температурах алмаз сгорает). Природные алмазы имеют высокую теплопроводность и самый низкий коэффициент трения.

Природный алмаз обозначают буквой А , синтетический - АС . Природные алмазы – это отдельные монокристаллы и их обломки, или сросшиеся кристаллы и агрегаты. Синтетические алмазы получают в виде мелкозернистых порошков и используют для изготовления абразивных кругов, паст и микропорошков. Отдельную группу составляют поликристаллические алмазы (ПКА) марок АСБ (Баллас) и АСПК (Карбонадо). ПКА из-за своей поликристаллической структуры значительно лучше сопротивляются ударным нагрузкам, чем монокристаллы алмаза, и, несмотря на меньшую твердость по сравнению с природным алмазом, имеют более высокие значения пределов прочности на растяжение и на поперечный сдвиг. Ударная прочность поликристаллов алмаза зависит от размеров алмазных зерен и с их увеличением снижается.

Алмаз имеет химическое сродство с никель- и железосодержащими материалами, поэтому при резании сталей на основе железа, на контактных поверхностях алмазного инструмента происходит интенсивное налипание обрабатываемого материала. Углерод, из которого состоит алмаз, активно реагирует с этими материалами при нагреве. Это приводит к интенсивному изнашиванию алмазного инструмента и ограничивает области его применения, поэтому природные алмазы применяют в основном при тонком точении цветных металлов и сплавов, не содержащих углерод и железо. Наиболее эффективное применение алмазного инструмента получают на чистовых и отделочных операциях при обработке деталей из цветных металлов и их сплавов, а также из различных полимерных композиционных материалов. Инструмент может быть использован при точении прерывистых поверхностей и при фрезеровании, однако его стойкость будет чиже, чем при обработке без удара.

Обрабатываемый материал V, м/мин s, мм/об t, мм
Алюминиевые литые сплавы 600…690 0,01…0,04 0,01…0,20
Алюминиево-магниевые сплавы 390…500 0,01…0,05 0,01…0,20
Алюминиевые жаропрочные сплавы 250…400 0,02…0,04 0,05…0,10
Дуралюмин 500…690 0,02…0,04 0,03…0,15
Бронза оловянистая 250…400 0,04…0,07 0,08…0,20
Бронза свинцовая 600…690 0,025...0,05 0,02…0,05
Латунь 0,02…0,06 0,03…0,06
Титановые сплавы 90…200 0,02…0,05 0,03…0,06
Пластмассы 90…200 0,02…0,05 0,05…0,15
Стеклотекстолит 600…690 0,02…0,05 0,03…0,05

Во многих случаях наблюдаемая на практике большая износостойкость резцов из синтетических алмазов, по сравнению с резцами из природных алмазов, что объясняется различием их структур. У природного алмаза появившиеся трещины на режущей кромке, развиваются и могут достигать значительных размеров. У ПКА (синтетический алмаз), возникающие трещины останавливаются границами кристаллов, что и определяет их более высокую, в 1,5…2,5 раза, износостойкость.

Еще одной из перспективных областей применения ПКА является обработка трудно поддающихся резанию и вызывающих быстрый износ инструмента таких материалов, как древесностружечные плиты, плиты средней плотности с высоким содержанием клея, с покрытиями на основе меламиновой смолы, декоративный бумажно-слоистый пластик, а также другие материалы, обладающие абразивным действием. Инструмент с ПКА имеет стойкость при обработке таких материалов в 200..300 раз выше стойкости твердосплавных инструментов.

Успешно применяются инструменты из ПКА в виде сменных многогранных пластин при обработке полимерных композитных материалов. Их использование позволяет повысить стойкость в 15…20 раз по сравнению с инструментом из твердого сплава.

Кубический нитрид бора (КНБ, BN ) в природе не встречается, его получают искусственным путем из «белого графита» при высоких давлениях и температурах в присутствии катализаторов. При этом гексагональная решетка графита превращается в кубическую, подобную решетке алмаза. Каждый атом бора соединен с четырьмя атомами азота. По твердости КНБ несколько уступает алмазу, но имеет более высокую теплостойкость, доходящую до 1300...1500 °С, и он практически инертен к углероду и железу. Как и алмаз, КНБ имеет повышенную хрупкость и низкую прочность на изгиб.

Известно несколько марок КНБ, объединяемых в группу «композиты». Разновидности КНБ отличаются друг от друга размерами, структурой и свойствами зерен, процентным составом связки, а также технологией спекания.

В качестве композитов наиболее широкое применение нашли: композит 01 (эльбор-Р), композит 05, композит 10 (гексанит-Р) и композит 10Д (двуслойные пластины с рабочим слоем из гексанита Р). Из них самым прочным является композит 10 (σ и = 1000...1500 МПа), поэтому его используют при ударных нагрузках. Остальные композиты применяются при безударной чистовой обработке закаленных сталей, высокопрочных чугунов и некоторых труднообрабатываемых сплавов. Во многих случаях точение композитами эффективнее процесса шлифования, так как из-за своей высокой теплопроводности КНБ не дает прижогов при работе на высоких скоростях резания и обеспечивает при этом низкую шероховатость поверхности.

Используют композиты в виде малоразмерных пластин квадратной, треугольной и круглой форм, закрепляемых на корпусе инструмента пайкой или механическим способом. В последнее время применяют также пластины из твердого сплава с нанесенным на них слоем композита или поликристаллов алмаза. Такие многослойные пластины обладают большей прочностью, износостойкостью и более удобны для крепления. Они позволяют снимать припуски большой глубины.

Главным резервом повышения производительности обработки для инструмента на основе BN является скорость резания (таблица 11.), которая может превышать скорость резания твердосплавным инструментом в 5 и более раз.

Таблица 11. Скорости резания, допускаемые различными инструментальными материалами

Из таблицы видно, что наибольшая эффективность применения инструментов на основе BN имеет место при обработке высокотвердых чугунов, сталей и сплавов.

Одной из возможностей повышения эффективности инструмента на основе BN является использование смазочно-охлаждающих жидкостей (СОЖ), которые для инструментов из BN наиболее эффективно использовать путем их распыления при скоростях резания до 90…100 м/мин.

Еще одной из эффективных областей использования инструмента, оснащенного поликристаллами композитов, является обработка наплавок, которыми упрочняют детали металлургического производства. Наплавленные материалы очень высокой твердости (до HRC 60..62) получают путем электродугового или плазменного наплавления порошковыми проволоками или лентами.

Области применения по скорости резания и подаче всех групп рассмотренных инструментальных материалов ориентировочно показаны на рис. 38.

Рис.38. Область применения различных инструментальных материалов по скорости резания V и подаче s .

1 – быстрорежущие стали; 2 – твердые сплавы; 3 – твердые сплавы с покрытиями; 4 – нитридная керамика; 5 – оксидно-карбидная (черная) керамика; 6 - оксидная керамика; 7 – кубический нитрид бора.

Какие материалы считаются сверхтвердыми? Каков диапазон их применения? Существуют ли материалы тверже алмаза? Об этом рассказывает профессор, PhD in Crystallography Артем Оганов.

Сверхтвердыми материалами называются материалы, которые имеют твердость выше 40 гигапаскалей. Твердость - это свойство, которое традиционно измеряется путем царапания. Если один материал царапает другой, то считается, что у него выше твердость. Это относительная твердость, она не имеет жестких количественных характеристик. Строгие количественные характеристики твердости определяются путем теста надавливанием. Когда вы берете пирамидку, сделанную обычно из алмаза, прикладываете некоторое усилие и надавливаете пирамидкой на поверхность вашего тестируемого материала, измеряете силу надавливания, измеряете площадь отпечатка, применяется поправочный коэффициент, и эта величина будет твердостью вашего материала. Она имеет размерность давления, поскольку это сила, деленная на площадь, поэтому гигапаскали (ГПа).

40 ГПа - это твердость кубического поликристаллического нитрида бора. Это классический сверхтвердый материал, который достаточно широко применяется. Самым твердым материалом, известным человечеству до сих пор, является алмаз. Долгое время были попытки, которые не прекращаются и сейчас, открыть материал тверже алмаза. Пока что эти попытки к успеху не привели.

Зачем нужны сверхтвердые материалы? Число сверхтвердых материалов невелико, порядка десяти, может быть, пятнадцать материалов, известных на сегодня. Во-первых, сверхтвердые материалы могут использоваться при резке, полировании, шлифовании, бурении. При задачах, которые связаны со станкостроением, с ювелирным делом, с обработкой камня, разработкой месторождений, с бурением и так далее, - это все требует сверхтвердых материалов.

Алмаз является самым твердым материалом, но он не является самым оптимальным материалом. Дело в том, что алмаз, во-первых, хрупок, во-вторых, алмаз горит в кислородной атмосфере. Представьте себе бур, который разогревается до высокой температуры в кислородной атмосфере. Алмаз, будучи элементарным углеродом, сгорит. И, кроме того, алмазом нельзя резать сталь. Почему? Потому что углерод реагирует с железом, образуя карбид железа, то есть ваш алмаз просто растворится в стали при достаточно высокой температуре, и поэтому нужно искать какие-то другие материалы. Кроме того, алмаз, конечно, достаточно дорог, даже синтетический алмаз не является достаточно дешевым материалом.

Более того, сверхтвердые материалы еще могут пригодиться в бронежилетах и прочих защитных военных приспособлениях. В частности, широко используется такой материал, как карбид бора, который тоже является сверхтвердым и достаточно легким. Такой вот диапазон применения сверхтвердых материалов.

Известно, что сверхтвердые материалы образуются в веществах с сильной ковалентной связью. Ионная связь понижает твердость. Металлическая связь тоже понижает твердость. Связи должны быть сильными, направленными, то есть ковалентными, и по возможности короткими. Плотность вещества тоже по возможности должна быть высокой, плотность в смысле числа атомов на единицу объема. И по возможности симметрия вещества должна быть тоже очень высокой, чтобы вещество было одинаково сильным в этом направлении, и в этом, и в этом. Иначе будет такая же история, как в графите, где связи очень сильные, но лишь в двух направлениях, а в третьем направлении между слоями связи исключительно слабые, в результате вещество получается тоже мягким.

Много институтов, много лабораторий по всему миру занимаются синтезом и разработкой сверхтвердых материалов. В частности, это Институт физики высоких давлений в Подмосковье, Институт сверхтвердых и новых углеродных материалов в Подмосковье, Институт сверхтвердых материалов в Киеве и ряд лабораторий на Западе. Активные разработки в этой области начались, я думаю, с 50-х годов, когда в Швеции и Америке впервые был получен искусственный алмаз. Поначалу эти разработки были секретные, но достаточно скоро в Советском Союзе тоже был налажен синтез искусственных алмазов, как раз благодаря работам исследователей из Института физики высоких давлений и Института сверхтвердых материалов.

Были разного рода попытки создания материалов тверже алмаза. Первая попытка была на основе фуллеренов. - это молекулы, похожие на футбольный мяч, полые молекулы, круглые или несколько удлиненные. Связи между этими молекулами очень слабые. То есть это молекулярный кристалл, состоящий из здоровых молекул. Но между молекулами связи слабые, вандерваальсовы. Если такого рода кристалл сдавить, то между молекулами, между этими шарами начнут образовываться связи, и структура превратится в трехмерносвязную ковалентную очень твердую структуру. Этот материал получил название тиснумит в честь Технологического института сверхтвердых и новых углеродных материалов. Предполагалось, что у этого материала твердость выше, чем у алмаза, но дальнейшие исследования показали, что это, скорее всего, не так.

Были предложения и достаточно активная дискуссия по поводу того, что нитриды углерода могут быть тверже, чем алмаз, но, несмотря на активную дискуссию и активные исследования, до сих пор такой материал миру представлен не был.

Была достаточно забавная работа китайских исследователей, в которой они предположили на основе теоретических вычислений, что другая модификация углерода похожа на алмаз во многом, но слегка от него отличается, а называется лонсдейлит. Согласно этой работе, лонсдейлит тверже алмаза. Лонсдейлит интересный материал, тонкие ламели этого материала были обнаружены в ударно-сжатом алмазе. Минерал этот был назван в честь знаменитой женщины Кэтлин Лонсдейл, великого британского кристаллографа, которая жила в 50–70-е годы XX века. У нее была крайне интересная биография, ей даже довелось посидеть в тюрьме, когда она отказалась тушить пожары во время Второй мировой войны. Она была по религии квакер, и квакерам запрещались любые действия, связанные с войной, даже тушить пожары. И за это ее в автозак поместили. Но тем не менее у нее все было хорошо, она была президентом Международного союза кристаллографов, и в ее честь был назван этот минерал.

Лонсдейлит, судя по всем имеющимся экспериментальным и теоретическим данным, все же мягче алмаза. Если посмотреть на работу этих китайских исследователей, то видно, что даже по их расчетам лонсдейлит мягче алмаза. Но как-то вывод был сделан вопреки их собственным результатам.

Таким образом, оказывается, что реального кандидата на смещение алмаза с должности самого твердого вещества нет. Но тем не менее вопрос стоит того, чтобы его проработать. Все-таки многие лаборатории до сих пор занимаются попытками создания такого материала. С помощью нашего метода предсказания кристаллических структур мы решили этим вопросом задаться. И задачу можно сформулировать так: вы ищете не вещество, которое обладает максимальной устойчивостью, а вещество, которое обладает максимальной твердостью. Вы задаете диапазон химических составов, например, от чистого углерода до чистого азота, и все, что посередине, все возможные нитриды углерода включены в ваш расчет, и эволюционно пытаетесь найти все более и более твердые составы и структуры.

Самым твердым веществом в этой системе оказывается тот же алмаз, и добавка азота к углероду ничего не улучшает в этой системе.

Таким образом, гипотезу о нитридах углерода как веществах тверже алмаза можно похоронить.

Мы пробовали все остальное, что предлагалось в литературе, разные формы углерода и так далее - во всех случаях побеждал всегда алмаз. Так что, похоже, алмаз с этого пьедестала не сместить. Но можно изобрести новые материалы, которые предпочтительнее алмаза в ряде других отношений, например, в смысле трещиностойкости или в смысле химической устойчивости.

Например, элементный бор. Нами была открыта структура, новая модификация бора. Эту статью мы опубликовали в 2009 году, и она вызвала колоссальный резонанс. Структура получается приложением небольшого давления к обычному бору и нагревом его до высоких температур. Эту форму мы назвали гамма-бор, и оказалось, что в ней присутствует частичная ионная химическая связь. На самом деле это то, что несколько понизит твердость, но за счет высокой плотности эта модификация все же оказывается самой твердой из известных модификаций бора, ее твердость около 50 ГПа. Давления для синтеза небольшие, и поэтому в принципе можно даже думать о ее синтезе в достаточно больших объемах.

Нами был предсказан ряд других сверхтвердых фаз, таких как фазы в системе «вольфрам - бор», «хром - бор» и так далее. Все эти фазы являются сверхтвердыми, но их твердости все же принадлежат к нижней части этого диапазона. Они ближе к отметке в 40 ГПа, чем к отметке в 90–100 ГПа, что соответствует твердости алмаза.

Но поиски продолжаются, мы не отчаиваемся, и вполне возможно, что мы или наши другие коллеги, работающие над этой темой по всему миру, смогут изобрести материал, который можно будет синтезировать при небольших давлениях и который по твердости будет приближаться к алмазу. Кое-что в этой области уже сделано нами и другими коллегами. Но как это применить технологически, пока не совсем понятно.

Расскажу о новой форме углерода, которая на самом деле была произведена экспериментально еще в 1963 году американскими исследователями. Эксперимент был концептуально достаточно простой: они брали углерод в форме графита и сдавливали его при комнатной температуре. Дело в том, что алмаз так не получить, алмаз требует сильного нагрева. Вместо алмаза в их экспериментах образовывалась прозрачная сверхтвердая неметаллическая фаза, но тем не менее это был не алмаз. И с характеристиками ни одной из известных форм углерода это никак не согласовывалась. В чем дело, что это за структура?

Совершенно случайно, изучая различные структуры углерода, мы натолкнулись на одну структуру, которая лишь ненамного уступала алмазу по устойчивости. Лишь спустя три года после того, как мы эту структуру увидели, посмотрели на нее, даже где-то опубликовали между строк, до нас дошло, что неплохо было бы свойства этой структуры сравнить с тем, что было опубликовано всеми теми исследователями начиная с 1963 года и вплоть до самых недавних лет. И оказалось, что существует полное совпадение. Мы были счастливы, мы быстро опубликовали статью в одном из самых престижных журналов, The Physical Review Letters , а через год статью в том же журнале опубликовали американские и японские исследователи, которые обнаружили, что совершенно другая структура углерода тоже описывает эти же экспериментальные данные. Проблема в том, что экспериментальные данные были достаточно плохого разрешения. Так кто же прав?

Вскоре швейцарские и китайские исследователи предложили еще ряд модификаций. И под занавес один китайский исследователь опубликовал около сорока структур углерода, большинство из которых тоже описывают эти же экспериментальные данные. Он мне пообещал, что, если ему будет не лень, он еще порядка ста структур предложит. Так какая же структура правильная?

Для этого пришлось исследовать кинетику преобразования графита в различные структуры углерода, и оказалось, что нам крупно повезло. Оказалось, что наша структура является наиболее предпочтительной с точки зрения кинетики преобразования.

Спустя месяц после опубликования нашей статьи вышла экспериментальная работа, в которой экспериментаторы сделали наиболее точный эксперимент с данными гораздо лучшего разрешения, чем прежде, и действительно оказалось, что из всех тех десятков опубликованных структур только одна структура объясняет экспериментальные данные - это все же наша структура. Этот новый материал мы назвали М-углерод, поскольку симметрия его моноклинная, от первой буквы М.

Этот материал лишь ненамного уступает по твердости алмазу, но есть ли какое-то свойство, в котором он превосходит алмаз, до сих пор непонятно.

До сих пор это, можно сказать, «вещь в себе». Мы продолжаем поиски и надеемся, что нам удастся изобрести материал, который, не сильно уступая алмазу по твердости, значительно будет его обгонять по всем остальным характеристикам.

Один из способов улучшения механических характеристик веществ состоит в их наноструктурировании. В частности, повысить твердость того же самого алмаза можно, если создавать нанокомпозиты алмаза или же нанополикристаллы алмаза. В таких случаях твердость удается повысить даже в 2 раза. И это было сделано японскими исследователями, и сейчас можно видеть продукцию, которую они производят, достаточно большие, порядка кубического сантиметра нанополикристаллы алмаза. Основная проблема с этими нанополикристаллами в том, что они настолько тверды, что их практически невозможно даже отшлифовать, и целая лаборатория шлифует это неделями.

Вот таким образом можно как менять химизм, менять структуру вещества в поисках улучшения его твердости и прочих характеристик, так и менять размерность.